Part Number Hot Search : 
NF25T E001503 TLGE262 VN2222L AFIM89 LZ0P3646 SPN3006 F1020
Product Description
Full Text Search
 

To Download HSSR-8200 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 H
200-V/160 Ohm, 1 Form A, Small-Signal Solid State Relay Technical Data
HSSR-8200
Features
* Compact Solid-State Bidirectional Signal Switch * Normally-Off Single-Pole Relay Function (1 Form A) * Very High Output OffImpedance: 10,000 Gigaohms Typical at 25C * Very Low Output Offset Voltage: < 0.5 V at IF = 1 mA * 200-Volt Output Withstand Voltage at 25C * High-Transient Immunity: > 2000 V/s * Monolithic High-Voltage IC * Operating Range: -40C to +85C * Very Low Input Current (1 mA); CMOS Compatibility * High-Speed Switching: 50 s Typical * 160-Ohm Maximum OnResistance at 25C * Surface Mount Option * 8-kV ESD Immunity: MILSTD-883 Method 3015 * Input-to-Output Insulation Voltage: 2500 Vac, 1 Minute * UL 508 Recognized * CSA Approved
Applications
* Relay Scanners & Analog Input Modules of Data Acquisition Systems * Analog Input Modules of Programmable Logic Controllers * Relay Multiplexers of HighPerformance Voltmeters * Telecommunication Test Instruments * Functional Tester of Board Test Equipment * Analog Signal Multiplexer * Flying Capacitor Multiplexer * Reed Relay Replacement
Description
The HSSR-8200 consists of a highvoltage integrated circuit optically coupled with a light emitting diode. This device is a solid-state replacement for single-pole, normally-open electromechanical relays used for general purpose switching of analog signals. The light-emitting diode controls the ON/OFF function of the solidstate relay. The detector contains high voltage MOS transistors and a high speed photosensitive drive circuit. This relay has superior OFF impedance, very low output offset voltage and input drive current.
Functional Diagram
TRUTH TABLE (POSITIVE LOGIC) LED OUTPUT ON L OFF H
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD. 1-454 5965-3574E
The electrical and switching characteristics of the HSSR-8200 are specified from -40C to +85C. The low IF allows compatibility with TTL, LSTTL, and CMOS logic resulting in low power consumption compared to other solid state and mechanical relays.
Selection Guide
6-Pin DIP (300 Mil) Single Channel Package HSSR-8400[1] HSSR-8060[1] 4-Pin DIP (300 Mil) Dual Channel Package Maximum Maximum ON Speed Resistance t(ON) R(ON) msec 25C 25C 0.95 10 1.4 0.7 1.5 200 6 1 Maximum Output Voltage VO(off) V 25C 400 60 200 90 Maximum Output Current Io(ON) mA 25C 150 750 40 800 Minimum Input Current mA 5 5 1 5 Hermetic 8-Pin Single Channel Packages
HSSR-8200
HSSR-7110[1]
Note: 1. Technical data are on separate HP publication.
Ordering Information
Specify part number followed by Option Number (if desired). HSSR-8200#XXX 300 = Gull Wing Surface Mount Lead Option 500 = Tape/Reel Package Option (1 K min) Option data sheets available. Contact your Hewlett-Packard sales representative or authorized distributor for information.
Schematic
8
+
1
IF
VF
SWITCH DRIVER
- 4 5
1-455
Package Outline Drawings
4-Pin DIP Package (HSSR-8200)
9.40 (0.370) 9.90 (0.390)
8 5
7.37 (0.290) 7.87 (0.310) TYPE NUMBER DATE CODE 6.10 (0.240) 6.60 (0.260) 5 TYP.
4
0.02 (0.008) 0.33 (0.013)
HP RXXXX YYWW PIN ONE
1
1.19 (0.047) MAX.
4.70 (0.185) MAX.
0.51 (0.020) MIN. 2.92 (0.115) MIN. 0.76 (0.030) 1.40 (0.055) 7.37 (0.290) 7.87 (0.310)
0.65 (0.025) MAX. DIMENSIONS IN MILLIMETERS AND (INCHES).
4-Pin DIP Package with Gull Wing Surface Mount Option 300
9.65 0.25 (0.380 0.010)
8 5
PIN 1
1
4
9.65 0.25 (0.380 0.010) 7.62 0.25 (0.300 0.010)
1.19 (0.047) MAX. 4.19 MAX. (0.165)
6.35 0.25 (0.250 0.010) 0.20 (0.008) 0.33 (0.013)
1.080 0.320 (0.043 0.013) 7.62 0.25 (0.300 0.010)
0.50 0.130 (0.020 0.005)
0.635 0.25 (0.025 0.010) 12 NOM.
DIMENSIONS IN MILLIMETERS (INCHES).
1-456
Thermal Profile (Option #300)
260 240 220 200 180 160 140 120 100 80 60 40 20 0 0 1 2 3 4 5 6 7 8 9 10 11 12
T = 145C, 1C/SEC T = 115C, 0.3C/SEC
TEMPERATURE - C
T = 100C, 1.5C/SEC
TIME - MINUTES
Figure 1. Maximum Solder Reflow Thermal Profile. (Note: Use of non-chlorine activated fluxes is recommended.)
Regulatory Information
The HSSR-8200 has been approved by the following organizations:
UL Recognized under UL 508, Component Recognition Program, Industrial Control Switches, File E142465.
CSA Approved under CAN/CSA-C22.2 No. 14-95, Industrial Control Equipment, File LR 87683.
Insulation and Safety Related Specifications
Parameter Min. External Air Gap (External Clearance) Min. External Tracking Path (External Creepage) Min. Internal Plastic Gap (Internal Clearance) Symbol L(IO1) L(IO2) Value Units 7.0 7.5 0.5 mm mm mm Conditions Measured from input terminals to output terminals, shortest distance through air Measured from input terminals to output terminals, shortest distance path along body Through insulation distance, conductor to conductor, usually the direct distance between the photoemitter and photodetector inside the optocoupler cavity DIN IEC 112/VDE 0303 PART 1 Material Group (DIN VDE 0110, 1/89, Table 1)
Tracking Resistance (Comparative Tracking Index) Isolation Group
CTI
200 IIIa
Volts
Option 300 - surface mount classification is Class A in accordance with CECC 00802.
1-457
Absolute Maximum Ratings
Storage Temperature ................................................... -55C to+125C Operating Temperature ................................................. -40C to +85C Lead Solder Temperature .... 260C for 10 s (1.6 mm below seating plane) Average Input Current - IF ............................................................ 10 mA Repetitive Peak Input Current - IF .................... 20 mA; 50% Duty Cycle Transient Peak Input Current - IF ............................................... 100 mA ( 1 s pulse width; 1 kHz Pulse Repetition Rate) Reverse Input Voltage ....................................................................... 5 V Average Output Current - IO ................................................... 40 mA[1] Input Output Insulation Voltage ......................................... 2500 VAC[6] Output Power Dissipation ..................................................... 320 mW[2] Output Voltage - VO ..................................................... -200 V to 200 V Infrared and Vapor Phase Reflow Temperature (Option #300) .......................................... see Fig. 1, Thermal Profile
Recommended Operating Conditions
Parameter Input Current (ON) Input Voltage (OFF) Operating Temperature Output Voltage Output Current Symbol IF(ON) VF(OFF) TA VO(OFF) IO(ON) Min. 1 0 -40 -200 -40 Max. 5 0.6 +85 200 40 Units mA Volt C Volt mA
1-458
DC Electrical Specifications
-40C TA +85C, 1 mA IF(ON) 5 mA, 0 V VF(OFF) 0.6 V, and all Typicals at TA = 25C unless otherwise specified. Parameter Output Withstand Voltage Sym. |VO(OFF)| Min. 200 70 Output On-Resistance R(ON) 40 30 Output On-Current Rating Output Off-Resistance Output Off-Leakage Current Output Off-Capacitance Output Offset Voltage Input Reverse Breakdown Voltage Input Diode Temperature Coefficient Input Forward Voltage Input Capacitance |IO(ON)| R(OFF) IO(OFF) C(OFF) -0.2 V O(OS) VR dVF /dT VF CIN Note 3 3 -1.3 10 -1.75 1.5 21 2.0 Note 3 50 10,000 0.02 4.0 4.5 Typ. 245 125 125 100 160 250 200 40 mA G nA pF Max. Units V Test Conditions IO = 1 A TA = 25C, IO = 1 MA IO = 1 MA IO = 40 mA VO 8 V, TA 40C VO = 200 V VO = 200 V VO = 0 V, f = 1 MHz IO = 0 A; IF = 1 mA IO = 0 A; IF = 5 mA V mV/ C V pF IR = 10 A IF = 1 mA IF = 5 mA VF = 0 V; f = 1 MHz 9 8, 17, 18 3 6 6 7 1 6 3, 4, 5 Fig. Notes
V
Switching Specifications
-40C TA +85C, 1 mA IF(ON) 5 mA, 0 V VF(OFF) 0.6 V, and all Typicals at TA = 25C unless otherwise specified. Parameter Turn On Time Symbol tON 300 45 Turn Off Time tOFF 75 7000 Output Transient Rejection Input-Output Transient Rejection dVO /dt 2000 7000 dVI-O /dt 2000 V/s V/s 350 1500 250 s Min. Typ. 50 Max. 200 Units s Test Conditions IF = 5 mA IF = 1 mA IF = 5 mA IF = 1 mA VO = 200 V VO = 50 V VI-O = 300 V VI-O = 50 V TA = 25C 15 TA = 25C 14 Fig. Notes
VO = 50 V 10, 11, 12, 13 VO = 50 V 10, 11, 12, 13
1-459
Package Characteristics
For -40C TA +85C, unless otherwise specified. All Typicals at TA = 25C. Parameter Symbol Min. Typ. Max. Units Test Conditions Input-Output VISO 2500 V rms RH = 45%, t = 1 min, Momentary WithTA = 25C stand Voltage* Resistance RI-O 100 100,000 G VI-O = 500 VDC, t = 1 min, Input-Output RH = 45% Capacitance CI-O 0.6 1.0 pF VI-O = 0 V, f = 1 MHz, Input-Output TA = 25C Fig. Notes 4, 5
4 4
*The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Characteristics Table (if applicable), your equipment level safety specification, or HP Application Note 1074, "Optocoupler Input-Output Endurance Voltage."
Notes: 1. Derate linearly above 40C at a rate of 0.3 mA/ C. 2. Derate linearly above 60C at a rate of 5 mW/ C. 3. VO(OS) is a function of IF(ON), and is defined between pins 8 and 5 with pin 5
as reference. VO(OS) must be measured in a stable ambient. See Figure 8 for variation of VO(OS) around the typical value. 4. Device considered a two terminal device: pins 1 and 4 shorted together, and pins 5 and 8 shorted together.
5. This is a momentary withstand proof test. These parts are 100% tested in production at 3000 V rms, one second. 6. R(OFF) is defined as VO(OFF)/IO(OFF).
Figure 2. Recommended Input Circuit.
IF = 1 mA
Figure 3. Typical On State I-V Characteristics.
Figure 4. Typical Output Resistance vs. Input Current.
1-460
NORMALIZED TO R(ON) @ 25 C IF(ON) = 5 mA IO = 40 mA
Figure 5. Typical Output Resistance vs. Temperature.
Figure 6. Typical Output Leakage vs. Temperature.
Figure 7. Typical Output Capacitance vs. Output Voltage.
Figure 8. Output Offset Voltage Distribution.
Figure 9. Typical Input Forward Current vs. Forward Voltage.
1-461
Figure 10. Switching Test Circuit for t ON, tOFF.
NORMALIZED TO tON AT VO(OFF) = 50 V TA = 25 C IF(ON) = 5 mA IO = 40 mA
VO(OFF) = 50 V TA = 25 C IO = 40 mA
Figure 11. Typical t ON and tOFF vs. Input Current.
Figure 12. t ON and t OFF vs. Output Voltage.
Figure 13. Normalized t ON and tOFF vs. Temperature.
Figure 14. Output Transient Rejection Test Circuit.
1-462
Figure 15. Input-Output Transient Rejection.
Figure 16. Over-Voltage Protection in Multiplexer Applications.
1-463
Figure 17. Differential Output Connections to Minimize Offset Voltage Effects.
Figure 18. Voltage Offset Test Setup.
1-464


▲Up To Search▲   

 
Price & Availability of HSSR-8200

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X